The role of radiotherapy following gross-total resection of atypical meningiomas

Clinical article

RICARDO J. KOMOTAR, M.D.,1 J. BRYAN IORGULESCU, B.S.,2,3 DANIEL M. S. RAPER, M.B.B.S.,4 ERIC C. HOLLAND, M.D., PH.D.,2,3,5,6 KATHRYN BEAL, M.D.,7 MARK H. BILSKY, M.D.,2,3,5 CAMERON W. BRENNAN, M.D.,2,3,5 VIVIANE TABAR, M.D.,2,3,5 JONATHAN H. SHERMAN, M.D.,8 YOSHIYA YAMADA, M.D.,5,7 AND PHILIP H. GUTIN, M.D.2,3,5

1Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida; Departments of 2Neurosurgery, 4Cell Biology and Genetics, and 5Radiation Oncology, and 3Brain Tumor Center, Memorial Sloan-Kettering Cancer Center; 1Department of Neurological Surgery, Weill Cornell Medical College, New York, New York; 2Department of Neurosurgery, The George Washington University Medical Center, Washington, DC; and 4Royal North Shore Hospital, Sydney, Australia

Object. Atypical (WHO Grade II) meningiomas comprise a heterogeneous group of tumors, with histopathology delineated under the guidance of the WHO and a spectrum of clinical outcomes. The role of postoperative radiotherapy for patients with atypical meningiomas who have undergone gross-total resection (GTR) remains unclear. In this paper, the authors sought to clarify this role by reviewing their experience over the past 2 decades.

Methods. The authors retrospectively analyzed all patients at their institution who underwent GTR between 1992 and 2011 with a final histology demonstrating atypical meningioma. Information regarding patients, tumor characteristics, and postoperative adjuvant therapy was gleaned from medical records. Time to recurrence and overall survival were analyzed using univariate, multivariate, and Kaplan-Meier survival analyses.

Results. Forty-five patients who met the inclusion criteria underwent GTR for atypical meningiomas. By a median follow-up of 44.1 months, 22% of atypical meningiomas had recurred. There was no recurrence in 12 (92%) of 13 patients who received postoperative radiotherapy or in 19 (59%) of 32 patients who did not undergo postoperative radiotherapy (p = 0.085), demonstrating a strong trend toward improved local control with postoperative radiotherapy. No other factors were significantly associated with recurrence in univariate or multivariate analyses.

Conclusions. This retrospective series supports the observation that postoperative radiotherapy likely results in lower recurrence rates of gross totally resected atypical meningiomas. Although a multicenter prospective trial will ultimately be needed to fully define the role of radiotherapy in managing gross totally resected atypical meningiomas, the authors’ results contribute to a growing number of series that support routine postoperative radiotherapy as an adjuvant treatment for these lesions.

Key Words • atypical meningioma • outcome • radiotherapy • surgery • oncology

Abbreviations used in this paper: GTR = gross-total resection; OS = overall survival; PFS = progression-free survival.

Atypical meningiomas are reported to account for 20%–35% of all meningiomas and represent an intermediate subtype between benign and anaplastic meningiomas in the WHO classification.5,39,40,47 Although benign meningiomas (WHO Grade I) are generally slow growing and have a low recurrence rate after GTR,28,44 atypical meningiomas are more locally aggressive and demonstrate more rapid tumor progression, with 5-year recurrence rates of approximately 40% in the literature in the absence of postoperative radiotherapy.5,20,34,39 Atypical meningiomas are also associated with significantly increased mortality. Although GTR, when possible, is widely accepted to be the standard of care for benign meningiomas, a purely neurosurgical approach may be inadequate for atypical meningiomas.

The role of postoperative radiotherapy as a standard adjuvant treatment after GTR of atypical meningiomas remains controversial.1,12,28 Some evidence that a majority of atypical meningiomas exhibit an intact p53 system suggests a radiation-sensitive phenotype and, consequently, a role for adjuvant radiotherapy.2,25,36 There has been support for early postoperative stereotactic radiotherapy in the majority of patients with atypical meningiomas to...
prevent progression and recurrence, although evidence for this position comes mainly from small, retrospective case series. 1, 7, 18, 32, 33, 36, 42 A recent case series suggested that the addition of postoperative radiation therapy may be associated with lower recurrence rates regardless of the extent of initial resection. 1 Our study aimed to further characterize the efficacy of postoperative radiotherapy in the prevention of recurrence and death after GTR of atypical meningiomas.

Methods
A retrospective analysis was undertaken of all patients at Memorial Sloan–Kettering Cancer Center who underwent resection of atypical meningiomas between 1992 and 2011. This study was approved by Memorial Sloan–Kettering Cancer Center’s institutional review board. Patient details were recorded, including sex, age at diagnosis, tumor diameter and location, operative characteristics, recurrence details, use of postoperative radiotherapy, and duration of follow-up. The majority of patients were treated with primary resection at our institution, although 5 patients underwent resection of a recurrent tumor, and 1 patient received whole-brain radiotherapy for acute lymphoblastic leukemia 16 years prior to surgery. A diagnosis of atypical meningioma was confirmed by histological examination of operative specimens in conjunction with imaging findings, operative appearance, and medical notes. Outcomes were also noted, including postoperative radiotherapy, recurrence, postrecurrence treatment, and survival. Gross-total resection was determined in all patients by postoperative MRI in conjunction with the surgeon’s impression intraoperatively and corresponds to Simpson Grade I and II excisions. In accordance with previous reports, 1 tumors were divided into the following categories: 1) convexity; 2) parasagittal/falcine; 3) sphenoid ridge; 4) posterior fossa; 5) midline anterior fossa (for example, olfactory groove, planum sphenoidale, and tuberculum); or 6) other categories according to their anatomical location, as identified by neuroradiology. Exclusion criteria included postoperative follow-up shorter than 2 months (2 patients, neither tumor recurred) and patients who died without postoperative imaging or recurrence (5 patients, 1 of whom received radiotherapy).

Time to recurrence was measured from the date of GTR to the date of radiological evidence of recurrent disease, which was determined via Gd-enhanced MRI in all cases. The median follow-up was measured from the date of GTR. Patients underwent follow-up until an end point of recurrence for PFS analysis; patients lost to follow-up or death were censored at the date of last imaging or death. An end point of death was used for OS analysis with cases lost to follow-up censored at the date of last review.

Statistical Analysis
Univariate Cox proportional hazards models and multivariate Cox regression analysis were used to identify risk factors for recurrence. Time to recurrence and time to death were estimated using the Kaplan-Meier method and compared among variables using a log-rank test. A p value ≤ 0.05 was considered statistically significant, and SPSS software was used for all statistical analyses (version 18.0, IBM Corp.).

Results
A total of 52 patients who underwent GTR of an atypical meningioma between 1992 and 2011 were treated at Memorial Sloan–Kettering Cancer Center. Forty-five patients remained after excluding patients with postoperative follow-up shorter than 2 months (2 patients, neither tumor recurred) and patients who died without postoperative imaging or recurrence (5 patients, 1 of whom received radiotherapy).

Patient and tumor characteristics are summarized in Table 1. The median follow-up was 44.1 months (mean 56.2 months, range 2.7–225.5 months). Thirteen patients received whole-brain radiotherapy for acute lymphoblastic leukemia 16 years prior to surgery.

TABLE 1: Patient and tumor characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of pts</td>
<td>45</td>
</tr>
<tr>
<td>no. of male pts (%)</td>
<td>20 (44.4)</td>
</tr>
<tr>
<td>age at diagnosis in yrs</td>
<td>56.1</td>
</tr>
<tr>
<td>range</td>
<td>23.3–81.3</td>
</tr>
<tr>
<td>follow-up in mos</td>
<td>44.1</td>
</tr>
<tr>
<td>range</td>
<td>2.7–225.5</td>
</tr>
<tr>
<td>no. alive at last follow-up (%)</td>
<td>40 (88.9)</td>
</tr>
<tr>
<td>diameter in cm</td>
<td>4.9</td>
</tr>
<tr>
<td>range</td>
<td>2.0–8.9</td>
</tr>
<tr>
<td>tumor location (%)</td>
<td></td>
</tr>
<tr>
<td>convexitv</td>
<td>27 (60.0)</td>
</tr>
<tr>
<td>parasagittal/falcine</td>
<td>6 (13.3)</td>
</tr>
<tr>
<td>sphenoid</td>
<td>8 (17.8)</td>
</tr>
<tr>
<td>posterior fossa</td>
<td>2 (4.4)</td>
</tr>
<tr>
<td>midline anterior fossa</td>
<td>2 (4.4)</td>
</tr>
<tr>
<td>other</td>
<td>0 (0)</td>
</tr>
<tr>
<td>postoperative therapy (%)</td>
<td></td>
</tr>
<tr>
<td>yes</td>
<td>13 (28.9)</td>
</tr>
<tr>
<td>no</td>
<td>32 (71.1)</td>
</tr>
</tbody>
</table>

* pts = patients.
(28.9%) received postoperative adjuvant radiotherapy (median follow-up 49.4 months). Recurrence developed in 14 patients (31.1%), of whom 9 (64.3%) were alive at last follow-up (Table 2 and Fig. 1). The actuarial recurrence rates at 1, 5, and 10 years were 7.9% (95% CI 0%–16.5%), 35.5% (95% CI 17.7%–53.3%), and 55.3% (95% CI 26.3%–84.3%), respectively. The median time to recurrence was 24.0 months (mean 38.0 months, range 8–132 months). Tumor recurred in 7 (25.9%) of 27 patients with convexity, 3 (50.0%) of 6 patients with parasagittal, and 4 (50.0%) of 8 patients with sphenoid meningiomas, reflecting the distribution of primary atypical meningiomas (Table 2). Of the patients with recurrence, 13 had not received prior radiotherapy (92.9%) and experienced recurrence at a median latency of 19.0 months (mean 36.9 months, range 8–132 months). Nine (69.2%) of these patients were alive at last follow-up. One patient who underwent radiotherapy experienced a recurrence 52.5 months post-GTR, received no further treatment, and died 48.6 months later (cause unknown). There were no recurrences in 12 (92.3%) of 13 patients who received fractionated radiotherapy after an initial GTR (Fig. 2). The median radiation dose was 59.4 Gy delivered in daily fractions of 180 or 200 cGy. Radiation therapy was initiated a median of 2 months after surgery and was completed over a median of 6 weeks (range 5.6–10.0 weeks). All patients with recurrent meningiomas survived 1 year postrecurrence, except 1 patient who was alive at last follow-up 4 months after recurrence.

Among the patients who had recurrence without radiotherapy, 6 (46.2%) received radiotherapy postrecurrence, 1 (7.7%) had a second resection, 3 (23.1%) underwent both radiotherapy and resection, and 3 (23.1%) received no further treatment. Five (83.3%) of 6 patients who received radiotherapy for recurrence were still alive at last follow-up (median 20.3 months, range 1.4–67.6 months). All 3 patients who received both radiotherapy and resection for recurrence were alive at last follow-up (median 36.3 months, range 14.3–159.5 months). All patients tolerated the treatment well with minimal, short-term complications that included the following: Grade 1 skin toxicity (dermatitis, erythema) and alopecia of the irradiated site, Grade 0 neurological toxicity, Grade 1 fatigue and headaches. One patient experienced persistent left temporal pain that resolved 18 months postradiotherapy.

Univariate and multivariate analyses were conducted

TABLE 2: Outcomes for patients with atypical meningiomas treated with GTR*

<table>
<thead>
<tr>
<th>Recurrence</th>
<th>Total</th>
<th>Alive (%)</th>
<th>Time to Recurrence (mos)†</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. of pts</td>
<td>14</td>
<td>9/14 (64.3)</td>
<td>24.0</td>
</tr>
<tr>
<td>postop RT</td>
<td>1</td>
<td>0 (0)</td>
<td>52.5</td>
</tr>
<tr>
<td>no postop RT</td>
<td>13</td>
<td>9/13 (69.2)</td>
<td>19.0</td>
</tr>
<tr>
<td>Actuarial Recurrence Rate</td>
<td>%</td>
<td>95% CI</td>
<td></td>
</tr>
<tr>
<td>1-yr</td>
<td>7.9</td>
<td>0–16.5</td>
<td></td>
</tr>
<tr>
<td>5-yr</td>
<td>35.5</td>
<td>17.7–53.3</td>
<td></td>
</tr>
<tr>
<td>10-yr</td>
<td>55.3</td>
<td>26.3–84.3</td>
<td></td>
</tr>
<tr>
<td>Location of Tumor</td>
<td>Total (%)</td>
<td>Recurrence (%)</td>
<td>Recurrence in Location (%)</td>
</tr>
<tr>
<td>convexity</td>
<td>27/45 (60.0)</td>
<td>7/14 (50.0)</td>
<td>25.9</td>
</tr>
<tr>
<td>parasagittal/falcine</td>
<td>6/45 (13.3)</td>
<td>3/14 (21.4)</td>
<td>50.0</td>
</tr>
<tr>
<td>sphenoid</td>
<td>8/45 (17.8)</td>
<td>4/14 (28.6)</td>
<td>50.0</td>
</tr>
<tr>
<td>posterior fossa</td>
<td>2/45 (4.4)</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td>midline anterior fossa</td>
<td>2/45 (4.4)</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td>other</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>0</td>
</tr>
<tr>
<td>Treatment for Recurrence</td>
<td>Total</td>
<td>Alive (%)</td>
<td>Follow-Up (mos)</td>
</tr>
<tr>
<td>none</td>
<td>4</td>
<td>1/4 (25.0)</td>
<td>82.5</td>
</tr>
<tr>
<td>RT</td>
<td>6</td>
<td>5/6 (83.3)</td>
<td>20.3</td>
</tr>
<tr>
<td>resection</td>
<td>1</td>
<td>0 (0)</td>
<td>98.0</td>
</tr>
<tr>
<td>RT + resection</td>
<td>3</td>
<td>3/3 (100)</td>
<td>36.3</td>
</tr>
</tbody>
</table>

* RT = radiotherapy.
† Values for the total group and the patients not receiving postoperative RT are medians.
to assess the following variables for their predictive value for tumor recurrence: use of postoperative radiotherapy, sex, tumor location, tumor diameter, and decade of life. In a univariate analysis, none of these variables was significantly associated with tumor recurrence, although postoperative radiotherapy revealed an association with lower recurrence trending toward significance (HR 5.05 [95% CI 0.65–39.15] for no postoperative radiotherapy, p = 0.12 [Table 3]). This trend was similarly evident in a multivariate analysis (HR 4.97 [95% CI 0.55–44.68] for no postoperative radiotherapy, p = 0.15). Other variables were not associated with recurrence in our multivariate analysis (Table 3).

Discussion

Although most meningiomas are benign, up to 20%–35% of tumors are classified as atypical (Grade II) according to the 2000 WHO classification.5,39,40,47 This classification is based on a number of histological characteristics, including demonstration of ≥ 4 mitotic figures per 10 hpf or ≤ 3 features associated with higher grade, including architectural sheeting, necrosis, prominent nucleoli, hypercellularity, or high nuclear-to-cytoplasmic ratio.30,40 Atypical meningiomas may arise spontaneously or transform from benign meningiomas; the latter type is associated with a more precipitous course and shorter OS.24 Early reports often classified atypical meningiomas together with malignant or anaplastic meningiomas,2,26,31 which have been shown to have significantly worse OS and PFS.17,49 Greater extent of resection was correlated with decreased recurrence rates in these initial series,15,49 with a 5-year survival of up to 87% in small series.9,15 Nevertheless, the majority of patients experienced recurrence after either surgery or postoperative radiotherapy,9,17 with no improvement in PFS postradiotherapy.26 Modern series that distinguish atypical meningioma from malignant meningioma report longer follow-up with low mortality rates46 and recurrence-free survival of up to 89% at 5 years in patients treated with postoperative fractionated radiotherapy.32,33 For patients not receiving routine radiotherapy, 5-year PFS rates of approximately 48% have been reported.19,34

The 1993 WHO classification system grouped multiple disparate histological entities into Grade II,27 contributing to heterogeneous patient outcomes and rendering direct comparison of case series difficult. More recent categorization from 2000 has helped to standardize nomenclature for these lesions,39,40,48 although some heterogeneity remains.46 The change of classification has also resulted in a significant increase in tumors classified as Grade II.42 Analyses of trends in meningioma management from before and after 2000 revealed that meningioma reclassification from “benign” to “atypical” was most commonly due to elevations in estimated mitotic counts.47

Prognostic Indicators

A number of prognostic indicators have been proposed from analyses of single-institution case series to help elucidate the remaining heterogeneity in the classification of atypical meningiomas. Histological features indicative of poor outcome include increased cellularity, high mitotic count, poor differentiation, and brain invasion.2,46,49 Elevated levels of the proliferation marker Ki 67 have been associated with tumor recurrence and lower OS for both atypical meningioma and anaplastic meningiomas.6,22,46 A variety of genetic abnormalities have been associated with tumor progression and pathogenesis for atypical meningiomas, including loss of chromosome 22; gains and losses of chromosomes 9, 10, 14, and 18; and amplifications on chromosome 17, although specific genes affected by these mutations remain unidentified.7,8 Other poor prognostic factors of atypical meningioma

TABLE 3: Patient and tumor factors associated with recurrence for atypical meningiomas treated with GTR

<table>
<thead>
<tr>
<th>Factor</th>
<th>Univariate</th>
<th>Multivariate</th>
</tr>
</thead>
<tbody>
<tr>
<td>postop RT</td>
<td>5.05 (0.65–39.15) for no RT</td>
<td>4.97 (0.55–44.68) for no RT</td>
</tr>
<tr>
<td>age</td>
<td>1.22 (0.81–1.84) per decade</td>
<td>1.27 (0.71–2.28) per decade</td>
</tr>
<tr>
<td>tumor size</td>
<td>1.08 (0.75–1.55) per cm</td>
<td>0.98 (0.65–1.47) per cm</td>
</tr>
<tr>
<td>tumor location</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>sex</td>
<td>1.16 (0.39–3.46) for men</td>
<td>1.21 (0.33–4.43) for men</td>
</tr>
</tbody>
</table>

* NA = not applicable.
Postoperative radiotherapy for atypical meningiomas

include bone involvement, epidermal growth factor receptor immunoreactivity, non–skull base location, and male sex. Newer imaging techniques, such as diffusion-weighted MR, diffusion-tensor imaging, or thallium-201 SPECT, may help differentiate benign from atypical meningiomas, although these modalities are unlikely to be widely used in the near future.

Tumor Response by Location

Convexity tumors are the most common atypical meningiomas in most series reporting location in the literature. In a survey of 378 meningiomas resected at a single institution over 8 years, the most common locations for Grade II meningiomas were convexity (40%), falx (18%), sphenoid wing (10%), tuberculum (10%), and olfactory groove (6%). Our cohort displayed a similar distribution, with 60.0% of patients harboring a convexity meningioma. Some authors have highlighted the positive long-term outcomes achievable with GTR for convexity atypical meningiomas, suggesting that no adjuvant treatment is necessary for these lesions. However, in our analysis, there was no association in univariate or multivariate analysis between location and outcome (Table 3). Even for convexity atypical meningiomas treated with GTR, there is a potential benefit to postoperative radiotherapy that should be carefully considered.

Response to Radiation Therapy

The published data suggest that the p53 system is intact in atypical meningioma; the p53 pathway is instead deregulated by alterations in p14ARF (cyclin-dependent kinase inhibitor 2A) and MDM2. Therefore, one would expect that these tumors would exhibit some extent of radiation sensitivity. An acquired mutation in p53 may explain atypical meningiomas that recur after radiotherapy. It would ultimately be interesting to compare the p53 status of the recurrent atypical meningiomas with and without radiotherapy. One might posit that atypical meningiomas that recurred after radiotherapy would be p53 mutant while the tumors that recurred without radiotherapy would be p53 wild-type.

Stereotactic radiosurgery has been used for recurrent lesions and as a primary or neoadjuvant treatment. Other radiotherapy modalities, such as combined proton- and photon-beam conformal radiotherapy or carbon ion radiotherapy, have been used in early phase clinical trials for atypical meningioma with satisfactory safety and efficacy profiles. A prospective Phase II study of carbon ion boost in conjunction with photon radiotherapy after Simpson Grade IV or V resection/biopsy of atypical meningioma is currently underway. Nevertheless, radiotherapy alone is insufficient treatment for Grade II meningiomas, which have a high chance of progression after primary radiotherapy. There is a growing consensus that favors early postoperative radiotherapy after resection of atypical meningioma based on single institutional series. Several series that have reported outcomes after radiotherapy for atypical meningioma did not discern between the use of radiotherapy as primary, adjuvant, or recurrence therapy, obscuring radiotherapy’s contribution to decreased risk of recurrence in patients concurrently treated with surgery and/or radiosurgery. Despite significant increases in local control with routine postoperative radiotherapy, early small series demonstrated high recurrence rates, particularly after subtotal resection, suggesting that clinical outcomes are primarily governed by the extent of tumor resection and not the use of adjuvant postoperative radiotherapy. A recent case series by Aghi et al. highlighted the potential for postoperative radiotherapy to reduce rates of recurrence and progression among patients with atypical meningioma who have undergone GTR. In concordance with that study, we found a strong trend toward lower recurrence rates in patients with atypical meningiomas treated with postoperative radiation after GTR (Fig. 3). A recent study of 66 atypical meningiomas treated with GTR reported results similar to those in our series. However, despite a strong trend toward local control with adjuvant radiotherapy, its authors concluded that postoperative radiotherapy is only indicated for atypical meningioma treated with subtotal resection but not for lesions treated with GTR.

Study Limitations

Several factors limit the conclusions that may be drawn from our experience as currently reported. Although there was a difference in rates of recurrence between patients who were treated with postoperative radiotherapy and those who received no adjuvant radiotherapy, the difference did not reach statistical significance, likely due to the small sample size. This is a limitation of most case series reported to date (Table 4). Although 22% of our patients experienced a recurrence by the median follow-up of 44.1 months (representing 71% of total recurrences, postoperative radiotherapy median follow-up 49.4 and 43.9 months for postoperative radiotherapy and no postoperative radiotherapy, respectively), recurrence of an atypical meningioma may occur at a time significantly displaced from the initial resection (1 patient expe-
rienced a recurrence 132 months post-GTR), highlighting the need for prudent routine monitoring to ensure prompt recognition of recurrent disease.

Conclusions

This retrospective case series supports the observation that postoperative radiotherapy may result in lower rates of recurrence of atypical meningiomas that have undergone initial GTR. There was no statistical difference, likely due to low power and a retrospective single-institution experience. However, actuarial recurrence rates at 5 years were close to 42% without radiotherapy and 20% with radiotherapy, and treatment without postoperative radiotherapy was associated with a relative risk of recurrence approximately 5 times greater than with adjuvant postoperative radiotherapy. Recurrences resulted in shortened OS and additional treatment burden, including multiple reoperations, chemotherapeutic regimens, or radiotherapy. Adjuvant radiation therapy should be judiciously used only when a clear benefit is demonstrated, due to the low risk of long-term detrimental effects, including radiation necrosis, deterioration of neurological function, and induction of further tumors. Although a multicenter, prospective trial will ultimately be needed to fully define the role of radiotherapy in the management of patients with atypical meningioma who have a GTR (2 such trials are underway: NCT00626730 and RTOG 0539), our results contribute to a growing number of other series in support of routine postoperative radiotherapy as an adjuvant treatment for these lesions.

Disclosure

The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper. Dr. Yamada is a consultant for Varian Medical Systems, is on the speakers’ bureau for the Institute for Medical Education, and is a board member of the American Brachytherapy Society.

Acknowledgments

The authors thank Dhanya Anand, M.B.B.S., for her assistance in data collection. They also thank Desert Horse-Grant, Shabiba Ogilvie, and Raquel Sanchez of the Brain Tumor Center at the Memorial Sloan-Kettering Cancer Center for their extraordinary assistance with this project.

References

Postoperative radiotherapy for atypical meningiomas
gene in meningiomas and its correlation to the p53 expression
review of changes introduced by the WHO classification of tumours of the central nervous system, 4th edition. Arch Pathol
atypical or anaplastic meningioma. Neuropathology 27:114–
120, 2007.
meningiomas and the future directions of meningioma treat-
mas Simpson grade 4 and 5 with a carbon ion boost in combi-
11. Combs SE, Hartmann C, Nikoghosyan A, Jäkel O, Krayenbühl N, von Deimling A, Hartmann C: Improved correlation of the neuropathologic clas-
sification according to adapted World Health Organization classification and outcome after radiotherapy in patients with
12. Combs SE, Hartmann C, Nikoghosyan A, Jäkel O, Krayenbühl N, von Deimling A, Hartmann C: Improved correlation of the neuropathologic clas-
sification according to adapted World Health Organization classification and outcome after radiotherapy in patients with
meningioma emphasizing the role of radiotherapy in treat-
17. Hoffmann W, Mühleisen H, Hess CF, Kortmann RD, Mathieu D, Martin JI, Niranjan A, et al: Stereotactic radiosurgery for convexity me-
18. Krayenbühl N, Pravdenkova S, Al-Mefty O: De novo versus transformed atypical and anaplastic meningiomas: compari-
21. Mair R, Morris K, Scott I, Carroll TA: Radiotherapy for atypical men-
23. Mattozo CA, De Salles AAF, Klement IA, Gorgulho A, McAl-
thor D, Ford JM, et al: Stereotactic radiation treatment for re-
25. Miay O, Lu X, Qiu Y, Jiang J, Lin Y: A multivariate analysis of prognostic factors for health-related quality of life in pa-
26. Milosevic MF, Frost PJ, Lapierriere NJ, Wong CS, Simpson WJ: Radiotherapy for atypical or malignant intracranial me-
33. Rogers L, Gilbert M, Vogelbaum MA: Intracranial meningi-
34. Smith JS, Lal A, Harmon-Smith M, Bollen AW, McDermott

Please include this information when citing this paper: published online August 24, 2012; DOI: 10.3171/2012.7.JNS112113.
Address correspondence to: Philip H. Gutin, M.D., Department of Neurosurgery, Memorial Sloan–Kettering Cancer Center, 1275 York Avenue, Room C-703, New York, New York 10065. email: gutinp@mskcc.org.